Code No.: 14163 AS (D)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. IV-Semester Advanced Supplementary Examinations, Aug./Sept.-2023 Mathematical Programming for Engineers (OE-II)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	N	I	CC	PO	PSC
1.	Mention any two differences between relational and logical operators.	2			1	2
2.	Write the MATLAB command to create a 4x3 matrix named "A" with random integer values ranging from 1 to 10.	1		1	2	2
3.	What are basic conditional statements available in MATLAB?	2	1	2	2	2
4.	Given the following MATLAB code, what will be the output? $x = 0:0.1:1;$	2	2	2	2	2
	$y = \sin(2*pi*x);$					
	plot(x, y);					
5.	Describe about MATLAB array and discuss about zeros (), ones () and eye () functions used in MATLAB program.	2	1	3	1	2
6.	Write a MATLAB code to find the eigenvalues and corresponding eigenvectors for the matrix $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$	2	1	3	2	2
7.	Write a MATLAB code to find the roots of the polynomial equation $f(x) = 2x^3 - 3x^2 - 11x + 6$ using MATLAB's roots function	2	2	4	1	2
8.	Give the advantage of Newton-Raphson Method	2	1	4	2	2
9.	Explain the advantages and limitations of using numerical methods like the 4th order Runge-Kutta method and MATLAB's ODE solvers for solving ODEs.	2	1	4	ž.	2
10.	Discuss different types of dialog boxes	2	1	5	2	2
	Part-B $(5 \times 8 = 40 Marks)$					
1. a)	A savings account has an initial balance of \$5000. The account earns an annual interest rate of 5%. Write a MATLAB code to calculate the balance in the account after 5 years.	4	3	1	1	2
b)	Write a MATLAB code to calculates the sum of all odd numbers from 1 to 100 and stores the result in a variable named "total".	4	2	1	1	2
2. a)	Write a MATLAB function called "average" that the	4	2	1	1	2

b)	Write a MATLAB code to plot the functions $f(x) = \sin(x)$ and $g(x) = \cos(x)$ on the same graph over the interval $[-2\pi, 2\pi]$. Include proper axis labels and a legend.	4	2	2	2	2
13. a)	Solve the given equations by using Gauss Elimination Method	4	3	3	2	2
	2x1+3x2-x3=1					
	x1+2x2-x3=4					
	-2x1-x2+x3=-3					
b)	Write a MATLAB program to solve the set of linear system equations using the matrix method:	4	3	3	2	2
	x+2y+3z=9					
	2x-y+3z=8					
	3x+0y-z=3					
14. a)	Consider a set of data points representing the temperature (in degrees Celsius) and pressure (in kilopascals) measurements for a gas. The data points are as follows:	4	2	4	1	2
	Temperature (T): [100, 150, 200, 250, 300]					
	Pressure (P): [50, 75, 100, 125, 150]					
	Perform a two-dimensional interpolation on the given data points to estimate the pressure at a temperature of 275°C. Use MATLAB's built-in function and specify the interpolation method.					
b)	Explain about polyfit and polyval ?	4	2	4	1	2
15. a)	Apply Runge kutta Method to find out the approximation of y at x=0.1 if $dy/dx = x + y^2$ given that y=1 for x=0 with step size=0.1	4	4	4	2	2
b)	Write the MATLAB code to to solve the ordinary differential equation (ODE) $dy/dx = x^2 - y$, with the initial condition $y(0) = 1$, over the interval [0, 5].	4	3	4	2	2
16. a)	Discuss in detail about the various relational and logical operators available in MATLAB with suitable examples.	4	2	1	1	2
b)	Write a MATLAB code to plot the function $f(x) = e^{(-0.2x)} * \sin(2\pi x)$ over the interval [0, 10]. Use a dashed line and include proper axis labels.	4	4	2	2	2
7.	Answer any two of the following:					
a)	Using Simson's 1/3 rule solve the integration $\int_0^3 x/1 + x^3 dx$ for N=10	4	3	3	1	2
b)	Find the root of the equation $f(x) = x^3 - 2x^2 + 4x - 5$ using the Newton-Raphson method. Start with an initial guess of $x = 1$.	4	4	4	1	2
c)	Outline the steps involved in creating a GUI in MATLAB. Explain the process of designing the GUI layout, adding components, and connecting callbacks.	4	2	5	1	2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%